关于不确定性原理,一些看法

作者: 365bet亚洲官方投注  发布:2019-09-26

首先这是部绝对够硬的科幻,即使制作十分简陋。有些带着科幻的噱头,却根本逻辑不通,漏洞百出好莱坞大片也只能靠超炫的制作吸引眼球了。那些片子当动作片看还行,科幻就算了。
      coherence是指波的一种性质。两束光有相同频率,相同振动方向,相位差恒定就coherent相干。相干是一种很紧密的性质。一个粒子和它自己肯定是相干的。打开红或蓝荧光棒的一户人家就像通过两个狭缝A或B的一个光子。实际上这样说是不准确的,粒子波函数同时穿过两狭缝。但如果发生测量,测得光子过B(即片中人们注意到他们用了蓝荧光棒),光子后来的表现会完全不受缝A影响,即好像缝A被堵住了(正常情况下,蓝户完全见不到红户,好像命中注定只能用蓝荧光棒)。然而彗星来了。。。。用不解释来解释无法解释的设想。。。。测量不再改变相干性,就是光子同时过了两狭缝,还干涉了。注意,不是波函数,是光子确实被测量到在AB两狭缝都出现过。假如光子有意识的话,它会疯掉。于是片中拿红蓝荧光棒的两拨人相遇了。
     测量,在片中被具象化为问自己和别人骰子数。没测量前是无法确定状态的(就像片中无法确定自己属于那户人家)。正常情形下,测量改变相干性,故多次测量结果必定相同(片中人不会发现前后不一的答案)。。。因为彗星。。。相干性得到保持,具有各自(测量)历史的人们相互干扰。
      挑个小刺,人毕竟不是粒子,艾米去干扰其它艾米时,身体各部分为什么恰巧没分离。。。
      我比较欣赏的是片中人物的科学素养很高,尤其是艾米。从一开始的疑惑,一步步分析,实验,最终解开谜团。这就像人类探索的一个写照。观察自身。
      片中一些小物件被用得特精彩。像结尾处未开封的相片一下子就解释为什么这户人家其乐融融。他们压根儿什么也没发现。
      末了,虽然主角艾米试图杀死另一个自己,但我还是很同情她。她明白了太多,最后不顾一切地想逃离。最后一个镜头真让人绝望。那个没被杀死的艾米也是厉害,身处险境,一下就明白过来,逃离,揭露,有条不紊。还是那句话:能斗得过自己吗?

量子世界中 波函数到底是数学描述还是实体

来源:《科技日报》2017-1-19陆成宽


通过双缝实验,我们知道微观粒子在实验的两端更加类粒,在中间却表现出波动性。微观粒子这种既有粒子性又有波动性的性质,被科学家称作波粒二象性。美国物理学家惠勒将这种量子力学中最本质的不确定性比作“烟雾缠绕的巨龙”:人们可以看到巨龙的头,它是粒子产生的源头;也可以看到巨龙的尾巴,它是实验观测的结果。巨龙的头和尾巴都是确定的、清晰的,但是巨龙的身体却是一团迷雾,没有人可以说清。

延迟选择实验 具象展示微观粒子波动性

为了具象地展示这种物理概念,1979年在为纪念爱因斯坦诞辰100周年而召开的一次专题讨论会上,惠勒正式提出了“延迟实验”的构想:当光子已经通过左下角的半透镜之后再决定是否放上右上角的半透镜。

在延迟选择实验中,科学家用左下角的半透镜来代替双缝,并且把该半透镜与光子的入射路径摆成45度角,那么,光子就有一半可能直接通过半透镜,一半可能被反射成90度角,这是一个量子随机过程,跟它选择双缝中的左缝和右缝本质上是一样的。同时,在左上角和右下角分别放置一个全反射镜,这样就可以把这两条分开的岔路再交汇到一起。此外,还需要在路径1和路径2的终点处装上探测器,用来确定光子究竟是沿着哪条路径过来的。

如果每次实验只发射一个光子,连续发射半小时,我们发现每次实验都只有一个探测器观测到光子,光子通过路径1和路径2的可能性各是50%。哥本哈根诠释认为,这说明单个光子每次只选择一条路径通过,从而达到对应的探测器。

但是,如果我们在路径1和路径2右上角的交汇处放上一块呈45度角的半透镜,神奇的事情就发生了,探测器中出现了干涉条纹,单光子出现了自我干涉。哥本哈根诠释认为,光子肯定同时通过了路径1和路径2。

光子似乎是个精灵,它可以知道我们是否在交汇处放置了半透镜,从而决定是从一条路径走,还是同时从两条路径走。

然而,如果我们延迟决定是否在路径1和路径2右上角的交汇处放置半透镜,那么光子会选择走一条路径,还是同时走两条路径呢?由此,惠勒就设计了著名的延迟选择实验,即,等光子通过了左下角的半透镜以后,还未到达右上角前,再选择是否在交汇处放置半透镜。而实验的结果和没有延迟选择是一样的,也出现了干涉。

我们知道,如果光子已经选择了走一条路径,那么在右上角的交汇处放置半透镜不会发生干涉。那么这个实验结果就给出了一个神秘奇特的解释:后发生的事情能够改变先发生的事件。观察者现在的行为决定了光子过去的路线。这就意味着我们可以在事情发生后再来决定它应该怎样发生。

最新诠释 打破传统认知的“微观实体”论

但是,清华大学龙桂鲁教授并不认同哥本哈根诠释对延迟选择实验的解释,他不认同现在的观测会影响过去的决定。他认为,不管后来是否在终点放置半透镜,光子都是选择同时走两条路径,即波函数分裂成了两个子波函数,同时沿着两条路径向终点“游去”。

龙桂鲁教授巧妙地设计了一个相遇延迟选择实验。“在相遇延迟选择实验中,一束光经过左下角的50:50分束器以后,它就会像一条大蛇一样分成两条小蛇,分别在路径1和路径2通过,两条路径的光在右上角相遇后,一束会往上走,到达上面的探测器,一束会往右走,到达右边的探测器。当两束光在右上角相遇,并且有一半已经通过干涉仪时,我们放上50∶50分束器,将两束子波函数齐腰截断,此时我们发现,插入前已经通过的那1/2的光有1/4到达上面的探测器,1/4到达右边的探测器。余下的1/2,由于放置了分束器,它就发生了干涉,这些光就会全部到达右边的探测器。总的加起来就是上面的探测器观测到了1/4的光,右边的探测器观测到了3/4的光。这也就说明了波函数是微观系统的实在图像。”龙桂鲁说道。对于这一现象,如果采用哥本哈根理论,就很难解释了。

龙桂鲁根据他自己提出的波函数实在,诠释设计了上述的相遇延迟选择实验。他认为,描述微观物体状态的波函数就是微观物体的真实存在, 而不仅仅是一种简单的数学描述手段, 也就是说, 微观物体以波函数的形式弥散在空间中。

“波函数是实在的东西,它就像一片甚至是几片云,不仅有大小,而且有相位,它们还会变化,弥散在空间。在双狭缝实验中,波函数有一部分通过左缝,一部分通过右缝。很难理解一个小球同时在左狭缝和右狭缝,而波函数的‘云’分成两部分,分别通过左、右狭缝就很自然,也非常容易理解了。更重要的是,不会有后发生的事情影响以前已经发生的事情这种非常不自然的现象了。这也解释了延迟实验中为什么光子同时通过两条路径,也解释了为什么会出现干涉现象。”龙桂鲁说。

当两路子波函数相遇时,由相干性引起的相遇后的波函数干涉相长和相消,使得微观系统的“云”在空间中的分布形状发生变化, 从而使得微观物体能够表现出波动性和干涉。当测量发生时, 根据量子力学中的波函数塌缩假设, 弥散在空间中的微观物体会发生瞬时的塌缩, 此时微观物体表现出粒子性。这种诠释不仅能够像传统的哥本哈根诠释一样可以描述物理现象, 而且很好地刻画了微观物体在空间中的实际存在形式, 以及测量或其他操作对这种存在形式的影响。

二元状态 应用高歌猛进,理论众说纷纭

波函数到底是什么,一直是量子力学中的一个基本问题。百年来,波函数的本质问题就像是迷雾一般弥散在人们眼前,阻碍了对神秘量子世界的清晰认识。据波函数理论衍生出来的诸如激光、半导体和核能等高新技术,深刻地变革了人类社会的生活方式。作为量子力学核心观念的波函数在实际中的意义如何,一直以来人们都众说纷纭,并无共识。中国科学院院士孙昌璞曾表示,直到今天,量子力学发展还是处在一种令人尴尬的二元状态:在应用方面一路高歌猛进,在基础概念方面却莫衷一是。

龙桂鲁认为,这项研究提出的波函数实在诠释, 将波函数看作是微观物体的真实存在, 而不再是简单的数学描述, 打破了人们对波函数的传统认识, 对帮助人们深刻理解量子规律, 进一步探索微观世界都具有重要意义。

编辑:华山

来源:原理 微信公众号

1.

在量子力学中,“不确定性”是一个高频出现的词汇。有观点认为,不确定性的意思是这个世界具有某种我们无法确定的东西。但多数物理学家认为,不确定性是自然本身的一种固有性质。

固有的不确定性是现代量子力学的创始人之一海森堡的一个核心思想。他提出的不确定性原理表明,我们不可能同时知道一个粒子的所有性质。例如,测量粒子的位置能让我们得知它的位置,但这种测量必然会干扰它的速度,且干扰的程度与位置测量的精度成反比。

海森堡利用不确定性原理解释了测量会如何破坏量子力学的经典特征,我们熟知的双缝干涉就是一个例子。

2.

在量子力学里,双缝实验是一种演示量子粒子的波粒二象性的典型实验。实验的设置中会有一个带有两个狭缝的屏障,量子粒子被发射到屏障上,穿过狭缝,在距离屏障的远处所放置的屏幕上生成干涉图样。我们不知道粒子通过的是哪一个狭缝,它的行为就好像它同时通过了两个狭缝,所以形成了干涉图样。

图片 1

粒子同时通过两个狭缝,在远场的屏幕上形成干涉图样。| 图片来源:Wikimedia

但是如果我们在屏障附近放置一个可以进行位置测量的装置,用以识别粒子穿过的是这两个狭缝中的哪一个,那么我们还能看到干涉图样吗?

我们知道答案是否定的,一旦我们得知粒子穿过的是哪个缝隙,那么屏幕上的干涉图样就会被破坏。海森堡的解释是,如果我们能通过位置测量来足够清楚地了解粒子是从哪个缝隙穿过的,就会给速度带来一个随机的干扰。我们对它穿过哪个缝隙的信息掌握得越清楚,干涉条纹的可见度就会越低。

然而长期以来,关于这种位置测量是否是通过干扰粒子的动量而使得干涉图样消失的,一直是物理学家争论的问题。量子物理学家认为,我们并不需要进行这样的位置测量来找出粒子穿过的是哪个狭缝。对任何依赖于粒子穿过了哪个狭缝才能给出测量结果的测量,都可以做到这一点。因此,有量子物理学家认为,能解释干涉图样消失的不是海森堡的不确定性原理,而是某些其他的机制。

3.

早在上世纪90年代初,就有量子物理学家对这个问题进行过实验论证。1991年,Scully、Englert和Walther几位物理学家证明,他们可以在不明显干扰粒子动量的情况下,以相当精确的位置测量来识别一个粒子通过了双缝实验中的哪一个狭缝。难道海森堡错了吗?

到了1994年,Storey、Tan、Collett、和Walls提出了一种一般形式,得到了与SEW相反的结论。STCW表明,探测到粒子穿过的是哪个狭缝这一信息,必然会涉及到粒子的一些动量传递。

随后,物理学家Wiseman和Harrison通过仔细分析后解决了这个矛盾,在一篇发表于1995年的论文中,他们指出SEW和STCW分别使用了不同的动量传递概念——一个是“经典”的,一个是“量子”的,也就是说,这两种结论实际上是互补的。

在一篇新发表于《科学进展》的论文中,中国科学技术大学几位学者肖芽、许金时、李传峰以及郭光灿,与Wiseman和Kedem一起,通过重建单光子在双缝实验中的轨迹,得到了动量传递的分布。简单来说,他们从两个狭缝中的许多不同起点来重建光子的运动,然后比较没有测量装置和有测量装置情况下速度随时间的变化,从而确定了由测量引起的速度变化。

他们发现,速度的变化不是在测量光子通过了哪个缝隙时出现的,而是被推迟到粒子穿过狭缝之后,在通往屏幕的传播过程中出现了累积的速度变化。这是为什么?答案是,因为光子不仅仅是粒子,它们也是波。他们进一步地确认了干涉图样的消失与后期的总动量干扰之间的关系,确定了粒子的速度所受到的干扰大小与海森堡的不确定性原理预测的一致。

实验表明,测量对粒子速度的影响会在粒子离开测量装置之后的很长一段时间内持续,最远可达5米。在远处的时候,累积的速度变化就已经足够大,足以破坏掉干涉图样中的波纹。

如此来看,海森堡的不确定性原理取得了胜利。

参考链接:

1]

2]

本文由365bet开户网址发布于365bet亚洲官方投注,转载请注明出处:关于不确定性原理,一些看法

关键词:

上一篇:值得看的电影,合格的春节档电影
下一篇:没有了